Sistema elettrico

Power to Gas: l’impianto di STORE&GO in Puglia PARTE 2

STORE&GO è un consorzio di 27 partner da sei paesi europei, con un budget totale di 28 milioni di euro finanziati da Horizon 2020. L’obiettivo principale di questo progetto di ricerca è quello di integrare la tecnologia Power to Gas (P2G) all’interno del sistema elettrico europeo. Il principio di base consiste nell’utilizzare il surplus di energia da FER per la produzione, e successivo storage di gas naturale. Sono 3 fino ad ora gli impianti dimostrativi operanti:

  • Falkenhagen, in Germania;
  • Solothurn, in Svizzera;
  • Troia, in Italia.

Abbiamo già analizzato la struttura dell’impianto dimostrativo presente a Troia. Nella prima parte siamo partiti dai processi di elettrolisi e di cattura della CO2 dall’aria. Vediamo di seguito i processi di metanazione e di liquefazione del gas naturale.

Unità di metanazione

Il processo di metanizzazione si basa, come già detto nella prima parte, sulla reazione:

CO2 + 4H2 → CH4 + 2H2O

Essa avviene all’interno del reattore METHAMOD di ATMOSTAT. Lo sviluppo del reattore si basa su un insieme di piastre reattive e di raffreddamento, ottenuto grazie alla saldatura per diffusione assistita da Hot Isostatic Pressing (HIP). Queste piastre consistono in un’alternanza di microcanali riempiti con catalizzatore e canali circolanti di fluido termovettore, che hanno un rapporto superficie/volume molto elevato (diverse migliaia di m2/m3). Il design è modulare (collegamento in parallelo dei moduli dell’unità per ottenere la velocità di uscita desiderata).

storeandgo.info

Unità di liquefazione

Per quanto riguarda condizionamento e liquefazione del gas, Hysytech si è occupata di questi processi. La tecnologia adottata dai loro prodotti permette di avere in uscita LNG a basse pressioni,  che lo rende valorizzabile nei mercati di più alto valore aggiunto. Il funzionamento si basa su un processo criogenico (sapendo che la temperatura di liquefazione del gas è -162 °C) integrato di purificazione e liquefazione, senza l’impiego di gas tecnici (senza azoto liquido), usando solo energia elettrica (a partire da soli 0,70 kWh/kg).

Altre informazioni

L’impianto è stato previsto per funzionare per circa 4000 ore nell’arco dei 17 mesi di durata del progetto.

Francesca Marasciuolo

Dottoranda in Industria 4.0 al Politecnico di Bari. Mi occupo di Smart Grid, e di come si possano coniugare fonti rinnovabili, mobilità elettrica e sistema elettrico. Autrice di #EnergyCuE da Luglio 2017. Sempre curiosa di nuove soluzioni tecnologiche per la produzione sostenibile di energia elettrica, mai stanca di imparare!

Recent Posts

Microplastiche e Belgica antarctica: prima evidenza di ingestione nell’insetto antartico

Un nuovo studio pubblicato sulla rivista Science of the Total Environment ha documentato per la…

12 ore ago

C3S e la criosfera: come i satelliti ci aiutano a monitorare l’evoluzione del ghiaccio terrestre

La criosfera è un componente fondamentale del sistema Terra, con un ruolo determinante nella regolazione…

2 giorni ago

L’energia del Sole trasforma il carbonio sotto la Terra

Osservata per la prima volta una reazione nucleare indotta da neutrini solari a bassissima energia.…

4 giorni ago

Energia pulita a partire dai rifiuti della carta: una nuova via per l’idrogeno

Un team di ricercatori ha sviluppato un innovativo catalizzatore per la produzione di idrogeno pulito,…

6 giorni ago

La forma delle città metterà a rischio l’accesso all’acqua per 220 milioni di persone entro il 2050

Entro il 2050, fino a 220 milioni di persone rischiano di perdere l’accesso all’acqua potabile…

1 settimana ago

Una svolta per l’energia a idrogeno: celle a combustibile efficienti a bassa temperatura

Un nuovo tipo di cella a combustibile a base di ossidi, sviluppato da scienziati dell'Università…

1 settimana ago